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bstract

Differential analysis of whole cell proteomes by mass spectrometry has largely been applied using various forms of stable isotope labeling.
hile metabolic stable isotope labeling has been the method of choice, it is often not possible to apply such an approach. Four different label free
ays of calculating expression ratios in a classic “two-state” experiment are compared: signal intensity at the peptide level, signal intensity at the
rotein level, spectral counting at the peptide level, and spectral counting at the protein level. The quantitative data were mined from a dataset of
245 qualitatively identified proteins, about 56% of the protein encoding open reading frames from Porphyromonas gingivalis, a Gram-negative
ntracellular pathogen being studied under extracellular and intracellular conditions. Two different control populations were compared against
. gingivalis internalized within a model human target cell line. The q-value statistic, a measure of false discovery rate previously applied to

ranscription microarrays, was applied to proteomics data. For spectral counting, the most logically consistent estimate of random error came from
pplying the locally weighted scatter plot smoothing procedure (LOWESS) to the most extreme ratios generated from a control technical replicate,
hus setting upper and lower bounds for the region of experimentally observed random error.
ublished by Elsevier B.V.
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. Introduction
Tandem mass spectrometry coupled with multiple dimen-
ions of HPLC has evolved in recent years to become a

Abbreviations: FDR, false discovery rate; HPLC, high performance liquid
hromatography; HIGK, human immortalized gingival keratinocyte; KGM, ker-
tinocyte growth medium; LOWESS, locally weighted scatter plot smoothing;
TQ, Thermo-Finnigan linear ion trap mass spectrometer; MudPIT, multidi-
ensional protein identification technology; ORF, open reading frame; PG,
orphyromonas gingivalis; Pi, peptide signal intensity; PP cells, synonym for
IGK, see definition above; PPC, P. gingivalis grown in media optimized for
IGK; RT-PCR, reverse transcription-polymerase chain reaction; Sc, spectral

ounting; S.D., standard deviation; TIGR, The Institute for Genomic Research;
FA, trifluoroacetic acid
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tandard approach to genome-wide analysis of whole cell
rotein mixtures. Differential protein expression analysis
f whole cell proteomes by mass spectrometry has largely
een accomplished using stable isotope labeling methods
1]. However, isotope labeling inevitably increases sample
omplexity and decreases qualitative proteome coverage, partly
ue to the duty cycle limits of current mass spectrometry
echnology and the need to collect data simultaneously for both
he labeled and unlabeled peptides sharing the same amino acid
equence.

In this paper, we examine four different ways of calculating
elative protein expression ratios, derived from linear ion trap
ata, in the absence of stable isotope labeling. Two of the
pproaches involve a continuous variable, signal intensity, and

wo involve a discrete (discontinuous) variable, the number
f peptide mass spectra observed, referred to here as spectral
ounts. These two types of data can both potentially address
he primary question of interest in such studies: does a given

mailto:mhackett@u.washington.edu
dx.doi.org/10.1016/j.ijms.2006.08.004
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Table 1
Experimental design for two internalized bacteria/control comparisons and four
methods for calculating protein expression ratios

PG PP/PG nm PG PP/PG PPC

Protein level Peptide level Protein level Peptide level

Spectral count ScRatio1 ScRatio3 ScRatio2 ScRatio4
Signal intensity PiRatio1 PiRatio3 PiRatio2 PiRatio4

The variable ScRatio1 thus represents the ratio of internalized PG and PG con-
t
t
a

e
a
t
o
P
t
a
c
l
e
g
i
i
o
p

2

2
m

g
b
(
d
o
c
C
a
e
a
a
w
a
T
m
D
A
t

06 Q. Xia et al. / International Journal o

rotein change expression level between two biologically
istinct states, or does it stay the same?

Spectral counting has been proposed as a method for quan-
itative proteomics by mass spectrometry [2–6]. Liu et al. [3]
emonstrated a linear relationship between sampling level, that
s the number of peptide mass spectra observed, and the rela-
ive abundance of a protein in a complex. Old et al. [4] have
ecently performed comparative studies of non-label quantita-
ive methods using well-characterized reference proteins and
uman erythroleukemia K562 cells. Here, we apply two varia-
ions on the theme of spectral counting to large-scale proteomic
atasets from studies of the interaction of a well-known oral
athogen with a model human host cell system. One approach is
he way common to the references cited above, that is to count
he observed mass spectra for each proteolytic fragment from a
iven protein and use that number as a measure of protein relative
bundance and as one input into a relative expression calcula-
ion. This will be referred to as the protein level spectral counting

ethod. The other approach is to treat each unique peptide as a
roup instead of each protein. A unique peptide is defined here
s a proteolytic fragment that maps to only one expressed pro-
ein for the organism under investigation. All unique peptides
or each protein are then grouped and the expression ratio is cal-
ulated by averaging the ratios from the peptides. This will be
eferred to as the peptide level spectral counting method. The
eptide level spectral counting method was felt to have potential
dvantages, such as more data points collected for each protein.
he signal intensity methods use the sum of MS1 signal intensity
s an indicator for relative abundance. By analogy with the defi-
itions given above, the signal intensity approach can be applied
t the level of unique peptides or at the reconstructed protein
evel. These methods will be referred to as peptide level signal
ntensity and protein level signal intensity, respectively. It was
ur initial hypothesis that for high signal-to-noise data indicative
f a biologically significant change in protein expression for a
iven ORF, all four methods would agree in terms of the direc-
ion of change, but not in the magnitude of change. Initially, we
id not expect any single approach to be greatly superior to the
thers. All were expected to be inferior to metabolic labeling in
erms of quantitative coverage of the proteome, based on studies
f another prokaryote with a similar number of protein encod-
ng ORFs. For Methanococcus maripaludis, a methanogenic
rchaeon, quantitative proteome coverage was approximately
0% better using 15N/14N ratios when compared to processing
he same raw data using protein level spectral counting as defined
bove [7].

Porphyromonas gingivalis is a highly invasive intracellular
ral pathogenic bacteria involved in adult periodontitis [8]. The
83 strain genome has been sequenced and the completed

enome sequence information was added to the Comprehensive
icrobial Resource of TIGR on June 8, 2001 [9]. In previ-

us studies, we used conditioned keratinocyte growth medium
cKGM) to simulate the early stages of P. gingivalis invasion of

uman gingival epithelial cells [10]; cKGM is KGM enriched
ith the supernatant materials left after human gingival epithe-

ial cell culturing. Recently, human immortalized gingival ker-
tinocytes (HIGK) [11] have replaced primary human gingival

o
c
s
r

rols grown under normal culture conditions (see Section 2.1) calculated using
he protein level spectral count method. The other seven conditions are defined
nalogously according to their position in the table.

pithelial cells for these studies. Differential protein expression
nalyses were performed to investigate the effects of internaliza-
ion within HIGK on P. gingivalis protein expression. Because
f technical problems encountered while growing 15N labeled
. gingivalis on minimal media with 15N ammonium sulfate as
he only nitrogen source, we have studied alternative non-label
pproaches to generating protein expression ratios in which two
ontrol populations of P. gingivalis are compared to a popu-
ation of bacteria that has been internalized within HIGK. The
xperimental design thus consisted of three populations of P. gin-
ivalis cells analyzed using four quantitative methods, as shown
n Table 1. The focus in this report is analytical and methodolog-
cal. A biologically based discussion of the quantitative changes
bserved in the P. gingivalis proteome will appear in a future
ublication.

. Materials and methods

.1. Sample preparation, HPLC fractionation, and tandem
ass spectrometry

There were three samples of P. gingivalis strain 33277: P.
ingivalis cells cultivated to mid-log phase in trypticase soy
roth supplemented with yeast extract (1 mg/ml), menadione
1 �g/ml), and hemin (5 �g/ml), at 37 ◦C under anaerobic con-
itions of 85% N2, 10% H2, and 5% CO2, referred to as PG nm
r PG normal; P. gingivalis cells incubated in fresh HIGK cell
ulture medium (Keratinocyte-SFM from GIBCO, Invitrogen
orporation, catalogue number 17005) for 18 h anaerobically
t 37 ◦C, referred to as PG PPC; and P. gingivalis cells recov-
red after an 18 h period of internalization within HIGK cells
nd lysis of the HIGK cells with distilled water, referred to
s PG PP. P. gingivalis cells were washed once with distilled
ater and recovered by centrifugation. Cell pellets containing

pproximately 109 cells were resuspended with 100 �l 0.1 M
ris buffer (pH 8.0), 50 �l RapiGest (1 mg/100 �l) in a 1.5 ml
icrocentrifuge tube. Four microlitres of 1 M DTT and 30 �l
NAse/RNAse solution (1 mg/ml DNAse I, 500 �g/ml RNAse
, 50 mM MgCl2, 50 mM Tris–HCl at pH 7.0) was added into

he suspension. The samples were immediately placed in 100 �l

f boiling 0.1 M Tris buffer (pH 8.0) for 5 min until the solution
eased to show obvious viscosity due to residual DNA. Each
ample was then transferred onto ice. The proteins were further
educed by the addition of 5 mM DTT at 37 ◦C for 30 min and
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hen alkylated with 30 mM iodoacetamide at 30 ◦C for 30 min in
he dark. Each sample was then adjusted to give a solution con-
aining 50 mM Tris, pH 8.0 and 5 mM CaCl2. Trypsin, 10 �g of
equencing grade (Promega, Madison, WI, USA), was added,
nd the mixture was incubated at 37 ◦C for 4 h. The samples
ere centrifuged at 14,000 rpm for 7 min. The supernatant was

ransferred to another 1.5 ml microcentrifuge tube. The insoluble
raction was kept at −80 ◦C for further analysis. The samples
ere acidified with TFA to quench the digestion and concen-

rated to 200 �l using a vacuum centrifuge (RC10-22, Jouan
nc., Winchester, VA). The supernatant from the digestion step
escribed above was thawed and centrifuged at 14,000 rpm for
min. The solution was loaded onto a 2.0 mm × 150 mm YMC
olymer C18 S-6 reversed-phase HPLC column (Waters Corp.,
ilford, MA, USA). The mobile phases were H2O and ace-

onitrile with 0.1% TFA. Peptides were eluted with increasing
cetonitrile percentage (2–50% for 50 min, 50–2% in 5 min) at
.3 ml/min. Eluent was collected into five fractions according
o UV absorption at 214 nm. Each fraction was concentrated to
0 �l using the vacuum microcentrifuge. Acetic acid and ace-
onitrile were added to a final concentration of 0.5 and 5% (v/v),
espectively.

The insoluble fraction was dissolved in 50 �l of 8 M urea
nd 0.125% (w/v) RapiGest. The proteins were reduced with
mM DTT at 37 ◦C for 30 min and then alkylated with 10 mM

odoacetamide at 30 ◦C for 30 min in the dark. After addition
f 100 �l of 0.1 M Tris (pH 8.0), CaCl2 and acetonitrile were
dded, 5 mM and 5%, respectively. Ten micrograms of trypsin
sequencing grade, Promega) was added and the mixture was
ncubated at 37 ◦C for 4 h. Five microlitres of TFA was added
o the mixture to stop the digestion. RapiGest was degraded and
recipitated by incubating at 37 ◦C for 30 min. The solution was
entrifuged at 14,000 rpm for 6 min. The precipitate was washed
wice with 40 �l of 50 mM Tris pH 8.0. The soluble fraction and
ombined washes were desalted and fractionated as described
bove except that peptides were eluted with a gradient of 2–70%
cetonitrile for 50 min. Eluent was collected into one fraction for
G nm (P. gingivalis in normal growth medium) and PG PPC
P. gingivalis in control epithelial cell culture medium), and two
ractions for PG PP (P. gingivalis recovered from inside epithe-
ial cells), based on the more intense UV absorbance (214 nm)
bserved for PG PP. Fractions of PG nm and PG PPC were
oncentrated to 25 �l using the vacuum microcentrifuge. Frac-
ions of PG PP were concentrated to 50 �l. Acetic acid and
cetonitrile were added to a final concentration of 0.5 and 5%
v/v), respectively. Approximately 2.5 �l from each combined
raction was analyzed using a 2D microcapillary HPLC system
10,12] combined with a Thermo-Finnigan LTQ mass spectrom-
ter in a semi-automated, data-dependent manner as previously
escribed [13].

Peptides were first partially eluted from the strong cation
xchange (SCX) packing, and were retained on the reverse phase
aterial by ammonium acetate step gradients (0, 10, 25, 50,
00, 250, and 500 mM). The peptides were eluted from the
everse phase packing with an acetonitrile gradient with 0.5%
v/v) acetic acid, and were electrosprayed into the LTQ for data-
ependent acquisition. The gradients programmed were: 5%
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a
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, hold 13 min, 5–16% B in 1 min, hold 6 min, 16–45% B in
5 min, 45–80% B in 1 min, hold 9 min, 80–5% in 5 min, hold
0 min. The flow rate in the capillary column was 150 nl/min
uring 16–45% B and 300 nl/min during all other gradient sec-
ions. The MS1 scan range was 400–2000 m/z units acquired
t a rate of 16,600 �/s. After each main beam (MS1) scan, the
0 most intense signals above 20,000 counts were selected for
ollision-induced dissociation (CID, MS2) with, each complete
ycle of MS1 and MS2 taking between 3.0 and 3.6 s. Default
arameters under the Xcalibur 1.4 data acquisition software
Thermo-Finnigan, San Jose, CA, USA) were used, with the
xception of an isolation width of 3.0 m/z units. Automatic gain
ontrol and dynamic exclusion (30 sec window, 10 ions) were
ctivated during all acquisitions.

.2. Database searching and DTASelect

MS/MS spectra were searched by SEQUEST [14] on a 16-
PU cluster computer (Denali Advanced Integration, USA)
gainst a combined fasta database which includes the temporary
ovine database from the University of California at Santa Cruz
15], bovine fasta database from the nrdb of the National Center
or Biotechnology Information [16], human fasta database from
he nrdb [16], NIH Mammalian Gene Collection [17,18], and
he P. gingivalis database from TIGR [9]. DTASelect [19] filter-
ng was done by applying the following criteria: peptides were
ully tryptic (beginning and ending at adjacent predicted trypsin
igestion sites); �Cn/Xcorr values for different peptide charge
tates were 0.08/1.9 for +1, 0.08/2.0 for + 2, and 0.08/3.3 for
3; all spectra detected for each sequence were retained (t = 0 in
TASelect).

.3. Data processing for relative quantitation

The data processing steps for relative quantitation were as
ollows: first, the raw files were converted to text files by the
le converter in the Xcalibur 1.4 data system for the LTQ. Then,
Visual Basic for Applications program was run in Microsoft
ord to extract the full scan number, ion m/z value and inten-

ity from the text file. A relational database was constructed in
ileMaker Pro 8. The DTASelect-filter file and each intensity
le was imported into FileMaker Pro 8 as separate tables. Iden-

ical multiple criteria relationships between each intensity table
nd the DTASelect-filter table were established by the following
ules: the m/z value in the DTASelect-filter file was kept within
he m/z range of the intensity file plus or minus the m/z tolerance
we use ±0.2); and the full scan value in the DTASelect-filter
le was within the range of the full scan number in the intensity
le plus or minus the full scan number tolerance (±30 scans).
hen, a FileMaker script was used to update the intensity and full
can fields in the DTASelect-filter table. Because the DTASelect-
ntensity files in descending order of signal intensity, the updated
ntensity field in the DTASelect-filter table was the value from
he highest mass peak for the corresponding CID parent ion
mong the ±30 scans.
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Fig. 1. (A) Scatter plot of log2 of run1/run2 spectral count ratios vs. log2

of protein level spectral counts from run1 and run2 of PG nm. (B) Log2 of
PG PP/PG nm spectral count ratios vs. log summed protein level spectral
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.4. Four relative quantitation methods for generating
xpression ratios

Calculating the protein level spectral count was straightfor-
ard. In the DTASelect-filter file, the number of each SEQUEST

dentified spectra was listed with each ORF. That number was
sed as the protein level spectral count. The ratio of each pro-
ein from two samples (PG PP/PG nm or PG PP/PG PPC; see
able 1) was then calculated from the two spectral count values
fter the normalization steps described below.

For the peptide level spectral counting method, the spectral
ount of each peptide was calculated by averaging the spec-
ral counts from two technical replicates. For those identified in
nly one replicate, that number was used as the spectral count.
hen, after normalization, for each peptide the ratio of two sam-
les (PG PP/PG nm or PG PP/PG PPC) was calculated. In the
ase when the peptide was only detected in one sample, 1 was
dded to the peptide level spectral count in order to avoid a
ount of zero. The protein level peptide intensity method used all
he intensity values from all peptides identified for one protein,
ncluding redundant measurements. The sum of the intensity
alues in MS1 was used to represent the abundance of each
rotein in the sample. For the peptide level peptide intensity
ethod, the summed intensity in MS1 for each unique peptide

equence was calculated by adding the signal intensity within
ach technical replicate, then averaging the totals for the techni-
al replicates. For those peptides identified in only one replicate,
he summed intensity was used. Then, for each unique peptide,
fter normalization, the ratio of two samples (PG PP/PG nm
r PG PP/PG PPC) was calculated from the average summed
ntensity values. In the case when peptide was only detected
n one sample, 20,000 counts of processed signal intensity was
dded to the peptide as its summed intensity in order to avoid
enerating missing ratios. This number of counts corresponded
o the average baseline threshold for selecting CID ions in MS1.

.5. Normalization of spectral counts and peptide
ntensities prior to calculating ratios

PG PP/PG nm spectral count ratios (both peptide level and
rotein level) were normalized by multiplying PG PP spectral
ounts by a factor of 2.43 to make the sum of spectral counts in
G PP and PG nm equal; PG PP/PG PPC spectral count ratios
ere normalized by multiplying PG PP spectral counts by 1.68;
G PP/PG nm peptide intensity ratios were normalized by mul-

iplying PG PP peptide intensities by 3.31 to make the sum of
eptide intensities in PG PP and PG nm equal; PG PP/PG PPC
eptide intensity ratios were normalized by multiplying PG PP
eptide intensities by 1.75.

.6. Outlier detection for expression ratios

Detection of outliers for normalized ratios generated for the

eptide level spectral count and peptide level peptide intensity
ethods was done in two steps for each list of ratios associated
ith an ORF, as we have published for metabolic labeling data

13]. For the first stage, Dixon’s Q-test [20] was used, in the sec-

3

s

2

ounts from PG PP/PG nm. The two solid curves shown are the LOWESS
moothing curves [25] of the upper and lower boundary of the log2 ratios of
rotein level spectral counts from the control replicates, PG nm.

nd stage, a MAD (median of the absolute deviation) modified
-score test [21–23] with a cutoff value of 3.5 was used.

.7. Statistical significance testing and curve fitting

The G-statistic, two-sample t-test, p-value, and q-value cal-
ulations were calculated using the R language [24]. R code
as modified in-house from source code kindly provided by the
epartment of Statistics Consulting Service of the University of
ashington. The relevant theory is given in the following sec-

ion. The locally weighted scatter plot smoothing (LOWESS)
urve fitting [25] shown in Fig. 1 was performed using R
ode developed in-house. The R source code is provided in
upplementary data.

. Theory and calculations
.1. G-test for protein level spectral counting

The G-test of significance [26] we chose for protein level
pectral counting is a likelihood ratio test for discrete data,
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hich was recently applied to human proteomics data by Old
t al. in their study of non-label quantitation [4]. For the PG PP
nd PG nm comparison, we first normalized the PG PP spec-
ral counts with PG nm by transforming the spectral counts of
ach protein in PG PP so that the sums of spectral counts in
G PP and PG nm were the same, based on the assumption

hat the PG PP and PG nm frequency distributions were similar
nd from samples of the same size. We then set the expected
requency, also known as the expectation value, equal to the
verage frequency of the two samples. That is, set

ˆ
PP = f̂NM = fPP + fNM

2
(1)

here fPP and fNM are spectral counts for a given protein in
G PP and PG nm; f̂PP and f̂NM are expected protein level
pectral counts in PG PP and PG nm under the null hypothesis
hat there is no difference in expression of the protein between
G PP and PG nm.

Our G-statistic then becomes

= 2

[
fNM · ln

(
fNM

(fNM + fPP )/2

)
+ fPP · ln

(
fPP

(fNM + fPP )/2

)]

(2)

A G-statistic used in this way is expected to approximate a
2 distribution with 1 d.f. [26]. In order to verify this assump-

ion for a χ2 distribution with 1 d.f., G-test simulations with
requencies from two binomial distributions with equal sample
izes and proportions were carried out. Details are presented in
ppendix A and the R code contained in Supplementary data.
he simulated distribution did not match the χ2 distribution,
xcept at the lowest proportion values, see Appendix Fig. A1.
owever, this simulation did indicate that p-values calculated
sing this assumption should be conservative. In other words,
ewer proteins were likely to be judged significantly over- or
nder-expressed in the internalized population relative to the
ontrols and the false positive risk would be reduced at the
xpense of increasing the risk of false negatives.

.2. q-Value calculations

Controlling for false positives has been proposed using a q-
alue rather than a p-value. The q-value is closely related to
he concept of false discovery rate, FDR, and has been defined
s a measure of the strength of an observed statistic, in this
ase a p-value, with respect to the positive false discovery rate,
FDR [27]. In the context of this paper, it is the minimum pFDR
hat can occur when rejecting the null hypothesis (no change
n protein expression) at a certain p-value. After generating a
-test statistic for each protein, a p-value was calculated as the
robability that a χ2 distribution with 1 d.f. was more extreme
han our G-statistic. The R package QVALUE [27,28] was used
o calculate q-values for each protein based on the p-value.
.3. Two-sample t-test

For the protein level peptide intensity method, a two-sample
-test was performed for each protein. The two-sample t-statistic

e
t
i
t
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as

= X − Y√
m · s2

x + n · s2
Y

(3)

here X and Y are the sum of peptide signal intensities from the
wo conditions being compared, sx and sy the standard devia-
ions, and n and m are the number of peptide spectra observed
or the protein under each condition. The p-values were then
alculated as the probability that a standard normal distribution
as more extreme than our two-sample t-statistic. The R pack-

ge QVALUE [27,28] was used to calculate q-values for each
rotein based on the p-value.

. Results and discussion

.1. Proteome qualitative coverage

From this study, 1245 total P. gingivalis proteins were quali-
atively identified in Pg nm, PG PPC and PG PP. 1137 proteins
ere identified in PG nm, 987 proteins in PG PP and 1068 pro-

eins in PG PPC. According to TIGR [9], the P. gingivalis W83
atabase contains about 2,227 protein encoding ORFs, and the
3277 strain used here is believed to be very similar. These facts
uggest proteome coverage of ∼56% of the predicted ORFs.

.2. Correlations among the four calculation methods

As can be seen from an inspection of the representative scatter
lots and correlation coefficients shown in Fig. 2, the four meth-
ds gave results that were strongly correlated, as expected. The
est correlations were observed between the two spectral count-
ng methods, the worst between the peptide intensity methods.
his is consistent with the observation that spectral counting data

ends to be less noisy and more reproducible relative to intensity-
ased methods, although such a statement must be subject to
everal caveats. Most important among these is the generally
oor performance of spectral counting approaches when pep-
ide numbers are low, as evidenced by the wide scatter for low
eptide numbers shown in Fig. 1.

The Venn diagrams in Fig. 3 show the overlapping sub-
ets of ratios calculated by the four methods for the two con-
rols that were each compared with internalized bacteria (see
able 1). From the Venn diagrams, for PG PP/PG nm, 37 up-
egulated and 18 down-regulated ORFs were reported by all
ethods; 185 up-regulated and 137 down-regulated ORFs were

eported by at least three out of the four methods. Moreover, for
G PP/PG PPC, 35 were up-regulated and 8 down-regulated
y all methods; 146 were up-regulated and 126 were down-
egulated by at least three out of the four methods. If we choose
ignificant expression changes reported by at least three out of
he four methods as criteria, we have 322 ORFs in PG PP/PG nm
nd 272 ORFs in PG PP/PG PPC. These numbers are closer to

stimates suggested by biological arguments [10,29] and also
he numbers suggested by the interpretation of Fig. 1 given
n Section 4.4 below. The similarities and differences among
he different calculation methods with respect to defining the
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Fig. 2. Scatter plot matrix generated in S-PLUS 6.0 (www.insightful.com) showing correlation coefficients for the four methods. The scatter plots were generated
from 528 data points for the PG PP/PG PPC expression ratios. See Table 1 and Section 1 for definitions of the variables.

Fig. 3. Standard four-statement Venn diagrams showing the overlap of detected significant and non-significant expression changes among the four different non-
labeling quantitation methods (see Table 1 for definitions). The criteria for determining significance was the following: for protein level ratios, the q-value was less
than 0.05; for peptide level ratios, the log2 ratio − S.D. was >0 or the log2 ratio + S.D. was <0.

http://www.insightful.com/
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xpression status of each ORF can be inspected visually by
iewing the eight whole proteome color ORF plots contained
n Supplementary data, Figs. S1–S8.

There were 20 ORFs contained in the most restricted sub-
et of significant expression changes, defined by changes in the
ame direction in both comparisons and by all calculation meth-
ds. A somewhat restricted overlap among all four methods and
oth controls was not unexpected, given the highly conserva-
ive selection criteria. The data for these 20 ORFs are given in
upplementary data, Tables S1 and S2.

.3. Repeatability of spectral counting data
Fig. 4 shows the correlation of spectral counts for each protein
dentified from three replicate runs of PG PP. As shown in the
hree panels, the spectral counts for each of the 751 commonly
dentified proteins in all three runs demonstrate a very consistent

ig. 4. (A–C) Scatter plots on a linear scale and correlation statistics for spectral
ounts from three technical replicates of PG PP, showing repeatability of the
pectral count method. Each data point represents the number of peptide MS1

pectra retained for each protein. These plots were generated in S-PLUS 6.0
www.insightful.com) for proteins commonly identified in all three runs.
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inear relationship. In other words, the spectral count of one pro-
ein in a complex sample consisting of many tens of thousands
f proteolytic fragments is a surprisingly stable measurement
nder these experimental conditions.

.4. Visualizing random errors in spectral counting

When the sum of spectral counts of technical replicate runs
s less than roughly 10, the ratios calculated are too noisy and
uantized to be of further use (Fig. 1A). For the peptide level
pectral count method, we did not use any peptide whose sum
f spectral counts for any two samples or replicates was less
han 10. When the sum of spectral counts goes to large values,
he log2-transformed ratios tend towards zero except in the case
f a real difference between the two data sets being compared.
utliers due to experimental error are infrequent at high counts.
or purposes of comparison, Fig. 1B shows a much more scat-

ered relationship between the ratios of PG PP/PG nm and the
um of spectral counts, which supports an increasing body of
bservations suggesting that there are hundreds of P. gingivalis
enes showing altered expression in PG PP relative to controls
10,29–31]. The data shown in Fig. 1 suggests that it should
e possible to use the error distribution of the expression ratios
bserved for replicate runs of the same sample (Fig. 1A) to
istinguish true expression changes from random errors when
omparing two different samples (Fig. 1B). This concept could
asily be extended to biological replicates as well. The LOWESS
moothing curves [25] of the upper and lower boundaries in
ig. 1A essentially demarcate the region of observed experi-
ental error that can be attributed to instrumental causes. It

s reasonable to interpret expression ratios that fall within this
egion as random error. Such curve fitting approaches have been
uccessfully applied to visualizing regions of random error in
ranscription microarray data [32,33]. Those same boundaries
re shown superimposed on a real experiment comparing inter-
alized bacteria and a control population in Fig. 1B. In Fig. 5, the
verlap of the significant results falling outside the boundary of
he LOWESS lines is compared with a q-value cutoff of 0.05. All
alues judged to be significant based on the LOWESS curve fit
ere contained in the set at q = 0.05, but an additional 113 ratios
ave q ≤ 0.05. Thus, the curve fit by itself yielded a numerically
maller estimate of the number of proteins showing a significant
hange in expression. Whatever the true nature of the ratios that
all outside the boundaries defined by the LOWESS curve, the
rocedure allows the analyst to quickly visualize those ratios that
re worth examining in greater detail, and also the vast majority
hat fall within the region bounded by the curve where, from
n experimental perspective, true expression change cannot be
istinguished from random error.

.5. Assumptions violated when many proteins change

The assumptions behind our G-test statistic, Eq. (2), were

lmost certainly violated to such a degree that the results, based
urely on theoretical considerations, should have been biased in
conservative direction, given that the expectation values were
ased on expression ratios from a proteome believed to be highly

http://www.insightful.com/
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ig. 5. Venn diagrams showing the comparison of the significant changes of PG
nd the significant proteins that are outside the LOWESS curves in Fig. 1B. Fo
urves in Fig. 1B were all included in the ScRatio1 results.

egulated (see Section 4.4). If a large number of ratios are derived
rom highly regulated proteins, the expectation values defined
y Eq. (1) are going to be skewed towards the direction of treat-
ng biologically significant changes as null. The normalization

ethods commonly used for transcription microarrays [34] and

or shotgun proteomics also make assumptions that only a few
enes or proteins among many are changing. These are reasons
hy the experimentally observed error distribution (Fig. 1) and

he simple graphical method discussed above in Section 4.4 are

i

o

ig. 6. Frequency histograms of the q-values from ScRatio1 (A), ScRatio2 (B), PiRa
he height of our estimate of the proportion of null q-values. The y-axis represents the
escribed in Sections 3.2 and 3.3.
s. PG nm from the protein level spectral count (ScRatio1) method with q = 0.05
up and down expression changes, the proteins that were outside the LOWESS

f practical interest as checks on both our multiple hypothesis
esting procedures and data normalization.

.6. Setting the q-value threshold for ratios calculated by
rotein level spectral counting and protein level signal

ntensity

Referring to Storey and Tibshirani [27], we generated a series
f q-value frequency histograms as shown in Fig. 6. The flat

tio1 (C) and PiRatio2 (D), see Table 1 for definitions. The dashed lines are at
number of ORFs in each bin. The x-axis represents the q-values calculated as
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Fig. 7. Frequency histograms of 26 identified peptides of P13793|FMA PORGI, major fimbrillin A observed in sample PG nm. The large variations in spectral
counts and intensity distributions between different peptides can explain why the relative standard deviations of peptide level methods are so high. The y-axis of each
histogram represents the number of peptide spectra in each bin. The x-axis represents signal intensity in units of log10 data system counts.



1 f Mas

r
i
o
A
s
“
T
a
t
d
l
t
p
c
l
F
v
a
e

4

b
e
o
i
(
s
v
t
t
c
p

5

i
r
a
i
r
s
m
l
T
w
s
p
t
p
i
“
w
t
i

i
a
c
t
l
w
g
l
c
O
t
b
s
c
i
s
c

w
s
m
b
r
s

S
c
r
o
c
a
l
n
v
m
p
p
i
a
o
m
a
m
m
n
n
a
B
t

A

14 Q. Xia et al. / International Journal o

egion is interpreted as one where there is no significant change
n expression. It was decided to take 0.05 as the q-value thresh-
ld. This value is represented by the dotted lines in Fig. 6.
ccording to Storey and Tibshirani [27], “the p-value is a mea-

ure of significance in terms of the false positive rate”, whereas
the q-value is a measure in terms of the false discovery rate”.
herefore, when we take 0.05 as the q-value threshold, among
ll expression ratios called significant, 5% of them are predicted
o be null on average. Alternatively, the LOWESS procedure
escribed above in Section 4.4 can be used as an aid for estab-
ishing a reasonable value for the q-value cutoff, analogously
o the procedure shown in Fig. 6. Interestingly, in spite of the
roblems noted above in Section 4.5 for the G-test, the simple
urve fit suggested an even smaller subset of potentially regu-
ated proteins when compared to the subset with q ≤ 0.05, see
ig. 5. Further study will be required to fine tune our use of q-
alues to address concerns that 113 proteins deemed significant
t q ≤ 0.05 fell within the bounds of random error determined
xperimentally (Fig. 1).

.7. Standard deviations are high for peptide level methods

Standard deviations for the peptide level methods were high
ecause there are large variations in molar response and recov-
ry among different peptides, regardless of their origin as part
f a particular protein. As shown for a representative case
n Fig. 7, the 26 peptides identified for major fimbrillin A
P13793|FMA PORGI) demonstrate how great the variation of
pectral counts and peptide signal intensity can be. Even for this
ery abundant protein, some peptides are identified with one or
wo CID spectra, while other peptides are identified with several
housand. Moreover, the range of peptide ion signal intensities
an extend well beyond the dynamic range of the measurement
rocess.

. Conclusions

The relationship of true protein abundance to spectral count-
ng and peptide signal intensities from mass spectrometry data
emains a topic of active investigation with few definitive
nswers and substantial disagreement as to how much coverage
s required to generate biologically useful protein expression
atios. For example, Silva et al. [35] observed “the average MS
ignal response for the three most intense tryptic peptides per
ol of protein is constant within a coefficient of variation of

ess than ±10%.” Our data tend to support this observation.
his trend can be seen for a representative protein in Fig. 7,
here the top 4 peptides ranked in number of identified spectra

how a much narrower range of values compared to the other 22
eptides. The methods defined in Section 1, as peptide level spec-
ral counting and peptide level signal intensity both performed
oorly (see Section 4.2) relative to the protein level methods,
n terms of quantitative proteome coverage. While matching

heavy” and “light” peptides sharing the same sequence works
ell in a classic stable isotope quantitation scheme [36], where

he peptides are analyzed at the same time, the random scatter
n the data inevitably increases when an analogous approach

s
a
T
W

s Spectrometry 259 (2007) 105–116

s applied to unlabeled peptides sharing the same sequence but
nalyzed separately at different times. Thus, the error bars asso-
iated with ratios generated from our peptide level data were
oo large in many cases to distinguish the ratios from 1 on a
inear scale or 0 on a log2 scale, whether any expression change
as occurring or not (see Sections 4.2–4.4). This can be seen
raphically in the Venn diagrams (Fig. 3) in which the peptide
evel methods have significantly fewer ORFs in the up or down
ategories. Peptide level spectral counting yielded the fewest
RFs in the up or down category, the protein level methods

he most, and the peptide level signal intensity approach fell
etween these extremes in terms of ability to detect expres-
ion change. The poor performance of the peptide level spectral
ounting approach in particular can be easily grasped by exam-
ning whole proteome color figures contained in the electronic
upplement, that summarize the entire dataset for each set of
onditions (Supplementary data, Figs. S1–S8).

To answer the question asked in Section 1, of the methods
e have tested, the best approach to measuring protein expres-

ion changes in a bacterial cell, in the absence of stable isotope
etabolic labeling, appears to be protein level spectral counting

ecause of its better precision (see Sections 4.2, 4.3 and 4.7)
elative to methods based on signal intensity or peptide level
pectral counting.

The LOWESS curve fit to the technical replicates (Fig. 1;
ection 4.4) shows promise as an easily implemented and logi-
al way to visualize the random errors in determining expression
atios based on protein level spectral counting. It is also worthy
f further study as a method for assessing the proper signifi-
ance level of q-value that best fits the data in a more formal
ssessment of ORFs that show significant changes in expression
evel. Those ratios that appear to represent real, biologically sig-
ificant expression can then be viewed as candidates for further
alidation. Using mass spectrometry, this can take the form of
ore specific post-acquisition data mining targeted at particular

roteins of interest, or carrying out new experiments targeted at
articular proteins, protein complexes, or posttranslational mod-
fications, as discussed in a recent review of mass spectrometry
pplications in biomarker and drug discovery [37]. The question
f biologically significant expression level change ultimately
ust be dealt with by using an approach in which other methods

re brought to bare on the problem, e.g., the use of transcription
icroarrays, quantitative RT-PCR, functional assays and other
eans as required. A whole cell shotgun proteomics experiment,

o matter how well executed, requires validation by an orthogo-
al approach. An elegant example of proteomics applied in such
systems biology context can be found in the recent study by
ecker et al. [38] of potential targets for antibacterial drugs in

he Salmonella enterica proteome.

cknowledgements

The authors wish to acknowledge Kevin Wheeler, Jim Shof-

tahl, Fred Taub, John Leigh, and Erik Hendrickson for their
ssistance, Michrom Bioresources for equipment support, Dave
abb, and John R. Yates for DTASelect and Contrast software.
e thank Qunhua Li for R code, comments, and discussion.



Q. Xia et al. / International Journal of Mas

Fig. A1. (A–D) Quantile–quantile (q–q) plots of Chi-square vs. G-statistic at
f
d
d
n

T
(

A

s
[
P
p
I
t
d
t
p
G
p
e
f
t
t

A

i

R

[

[
[

[

[

[ e/.
[
[

[

[
[
[
[
[
[
[
[

[
[
[
[
[

our levels of proportion. The assumption of equivalence is violated to a greater
egree as the proportion value increases. Note that the proportion in the binomial
istribution used to model the G-statistic, p, and the p-value used to estimate the
umber of proteins for which the null hypothesis is false, are different concepts.

his work was supported by the NIH NIDCR under DE014372
M.H.) and DE011111 (R.J.L.).

ppendix A

In order to compare the G-statistic distribution [26] to the Chi-
quare distribution with 1 d.f. [26], quantile–quantile (q–q) plots
39–44] were generated from 873 common proteins detected in
G nm and PG PP. Usually, q–q plots are used to test if the
opulations of two data sets follow the same distribution [45].
n this case, q–q plots are presented to show the relationship of
he simulated G-statistic, Eq. (2) in Section 3.1 and a Chi-square
istribution with 1 d.f. The solid line is where the two distribu-
ions are equivalent. Fig. A1 shows q–q plots with four different
roportions. With relatively small proportions (A and B), the
-statistic agrees with the Chi-square distribution; with larger
roportions (C and D), this agreement no longer exists. How-
ver, no matter how good or bad the agreement is, the quantiles
rom the Chi-square distribution with 1 d.f. are always larger
han the simulated G-quantiles, which makes p-values based on
he Chi-square assumption conservative.

ppendix B. Supplementary data

Supplementary data associated with this article can be found,
n the online version, at doi:10.1016/j.ijms.2006.08.004.
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